bpnreg - Bayesian Projected Normal Regression Models for Circular Data
Fitting Bayesian multiple and mixed-effect regression models for circular data based on the projected normal distribution. Both continuous and categorical predictors can be included. Sampling from the posterior is performed via an MCMC algorithm. Posterior descriptives of all parameters, model fit statistics and Bayes factors for hypothesis tests for inequality constrained hypotheses are provided. See Cremers, Mulder & Klugkist (2018) <doi:10.1111/bmsp.12108> and Nuñez-Antonio & Guttiérez-Peña (2014) <doi:10.1016/j.csda.2012.07.025>.
Last updated 1 years ago
6.13 score 13 stars 103 scripts 379 downloadswaspr - Wasserstein Barycenters of Subset Posteriors
Functions to compute Wasserstein barycenters of subset posteriors using the swapping algorithm developed by Puccetti, Rüschendorf and Vanduffel (2020) <doi:10.1016/j.jmaa.2017.02.003>. The Wasserstein barycenter is a geometric approach for combining subset posteriors. It allows for parallel and distributed computation of the posterior in case of complex models and/or big datasets, thereby increasing computational speed tremendously.
Last updated 1 years ago
4.10 score 25 scripts 116 downloads